Sr. No \qquad

[SET-V]
 Ph.D. Programme (Odd Semester)
 MATHEMATICS

Marks: 100
Time: 2 hours

Roll No.: \qquad

Date:

Centre Name:

INSTRUCTIONS FOR THE CANDIDATES

INSTRUCTIONS FOR THE CANDIDATES	
1.	Please do not open (Break the seal) of the question booklet before time
2.	An OMR answer sheet is being provided separately along with this question booklet. Please fill up all relevant entries like Roll number, Centre code, Paper Number etc. in the spaces provided on the OMR answer sheet and put your signature in the box provided for this purpose.
3.	There are 100 questions in this booklet. Against each question four alternative choices (A), (B), (C) and (D) are given, out of which only one is correct. Indicate your choice of answer by Darkening the suitable circle with Black/Blue Ball Pen in the OMR answer sheet supplied to you separately.
4.	Each question carries one mark. There will be 1/4 $\mathbf{4}^{\text {th }}$ negative marking.
5.	Read and follow the instructions given on the backside of the OMR answer sheet carefully.
6.	Do not write your name/Roll number or give any identification mark at any place on the OMR sheet.
7.	Keep all your belongings outside the examination hall. Do not retain any paper except the ADMIT CARD.
8.	Do not talk to each other. Do not borrow anything from other candidates.
9.	Use of CALCULATOR (except programmable calculator) is allowed. 10.Any body found involved in malpractices, will be disqualified from appearing in the entrance test.
11.	At the start of the examination, please ensure that all pages of your booklet are properly printed; your question booklet is not damaged in any manner and contains 100 questions. In case of any discrepancy, report to the invigilator immediately. No claim in this regard will be entertained at the later stage.

For Rough Work

[SET-V]

MATHEMATICS
Marks: 100
Time: 2 hours

NOTE:

(i) Attempt all questions. Each question carries one mark. There will be $1 / 4^{\text {th }}$ negative marking.
(ii) There are $\mathbf{1 0 0}$ questions in this booklet. Against each question four alternative choices (A), (B), (C) and (D) are given, out of which only one is correct. Indicate your choice of answer by Darkening the suitable circle with Black/Blue Ball Pen in the OMR answer sheet supplied to you separately.

1. The function $f(x)=\left\{\begin{array}{ll}0, & x \text { is irrational } \\ 1, & x \text { is rational }\end{array}\right.$, is
(A) continuous everywhere
(B) continuous at $x=0$ only
(C) continuous at $x=1$ only
(D) discontinuous everywhere
2. The function, $f(x)=\left\{\begin{array}{ll}3 x-5 & , x<3 \\ x+1 & , x>3 \\ K & , x=3\end{array}\right.$ is continuous at $x=3$ if K is equal
(A) 1
(B) 2
(C) 3
(D) 4
3. A single letter is selected at random from the word "PROBABILITY". Then the probability that it is a vowel is
(A) $3 / 11$
(B) $4 / 11$
(C) $7 / 11$
(D) $8 / 11$
4. If a matrix $A=\left(\begin{array}{cc}1 & 0 \\ 1 / 2 & 1\end{array}\right)$, then A^{50} is equal to
(A) $\left(\begin{array}{cc}1 & 0 \\ 0 & 50\end{array}\right)$
(B) $\left(\begin{array}{cc}1 & 0 \\ 25 & 1\end{array}\right)$
(C) $\left(\begin{array}{cc}1 & 0 \\ 50 & 1\end{array}\right)$
(D) none of these
5. The rank of the matrix $\left[\begin{array}{cccc}1 & 3 & 4 & 2 \\ 2 & 4 & 6 & 2 \\ -1 & 5 & 4 & 6\end{array}\right]$ is
(A) 1
(B) 2
(C) 3
(D) 4
6. The degree of nilpotence of the matrix $\left[\begin{array}{cc}6 & 9 \\ -4 & -6\end{array}\right]$, is
(A) Zero
(B) 1
(C) 2
(D) 4
7. The value of λ, for which the system of equations
$x+y+z=5, \quad x+2 y+3 z=9, \quad x+3 y+\lambda z=\mu$ has unique solution, is
(A) $\lambda=5, \mu=13$
(B) $\lambda=5, \mu \neq 13$
(C) $\lambda \neq 5$
(D) $\mu \neq 13$
8. Out of regression lines
$3 x+12 y=9,3 y+9 x=46, \quad$ the
regression line of y on x is
(A) $3 y+9 x=46$
(B) $3 y+9 x=46$ if $y<x$
(C) $3 x+12 y=9$
(D) $3 x+12 y=9$ if $x>y$
9. Suppose a continuous random variable x has the probability density function as $f(x)=\left\{\begin{array}{ll}1.5\left(1-x^{2}\right), & \text { for } 0<x<1 \\ 0, & \text { otherwise }\end{array}\right.$, then $P(x>0.5)$ is
(A) 0.6125
(B) 0.3125
(C) 0.2625
(D) None of these
10. Let A and B be two events such that $P(A)=0.4, P(B)=p$ and $P(A \cup B)=0.6$. If A and B are independent, then the value of p is
(A) $1 / 3$
(B) $1 / 2$
(C) $1 / 4$
(D) $2 / 7$
11. 3% of the electric bulbs manufactured by a company are defective. The probability that a sample of 100 bulbs has no defective bulb is given by
(A) $1+e^{-3}$
(B) $1-e^{-3}$
(C) $3 e^{-3}$
(D) e^{-3}
12. If the lines of regression of Yon X and X on Y are $y=K x+4$ and $x=4 y+5$ respectively, then
(A) $0 \leq K \leq 4$
(B) $0 \leq K \leq \frac{1}{4}$
(C) $K>\frac{1}{4}$
(D) None of these
13. The matrix of the relation $R=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{4}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{3}\right)\right\}$ defined from the set $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ to set $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$, is
(A) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]$
(B) $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1\end{array}\right]$
(C)
$\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 0 \\ 1 & 0 & 2\end{array}\right]$
14. If trace of the matrix $A=\left[\begin{array}{ll}a & 7 \\ 2 & b\end{array}\right]$ is $\mathbf{8}$ and the product of the eigen values is 1 , then the values of a and b are respectively
(A) 4,5
(B) 2,3
(C) 3,2
(D) 5,3
15. Let X be a set of 6 elements. How many relations on X are reflexive?
(A) 2^{6}
(B) 2^{36}
(C) 6^{2}
(D) 6
16. Let U and W be two subspaces of a vector space V. The sum $U+W$ is a direct sum of U and \mathbf{W} if
(A) $U \cap W=\phi$
(B) $U \cap W=\{0\}$
(C) $U \cap W \neq\{0\}$
(D) (D) $U \cap W \neq \phi$
17. Let $\wp_{3}(x)$ denotes set of real valued polynomials having degree atmost 3 and let $W=\left\{p \in \wp_{3}(x) \mid p(1)=0\right\}$, then the dimension of subspace W is
(A) 1
(B) 2
(C) 3
(D) 4
18. If T linear transformation $T: R^{2} \rightarrow R^{2}$, such that $T(1,2)=(3,1) \quad$ and $T(1,-1)=(1,2)$, then the value of $T(4,2)$ is given by
(A) $(8,6)$
(B) $(6,8)$
(C) $(8,8)$
(D) None of these
19. For any positive real number x, the value of the integral $\int_{0}^{1} \operatorname{Arg}(-x) d x$ is
(A) $\pi / 4$
(B) $\pi / 6$
(C) $\pi / 2$
(D) π
20. A feasible solution which optimizes the objective function of an LPP is called
(A) optimum solution
(B) optimal value
(C) optimal function
(D) None of these
21. Which of the following statements is correct?
(A) Every LPP admits an optimal solution.
(B) A LPP admits a unique optimal solution.
(C) If a LPP admits two optimal solutions, then it has an infinite number of optimal solutions.
(D) The set of all feasible solutions of a LPP is not a convex set
22. Which of the following sets is not convex?
(A) $\{(x, y) \mid x \geq 2, y \leq 3\}$
(B) $\quad\left\{(x, y) \mid 3 x^{2}+2 y^{2} \leq 6\right\}$
(C) $\left\{(x, y) \mid y^{2} \leq x\right\}$
(D) $\left\{(x, y) \mid 3 \leq x^{2}+y^{2} \leq 5\right\}$
23. Which of the following relations between the operators is wrong?
(A) $\Delta=(I-\nabla)^{-1}-1$
(B) $E=\frac{I}{I-\nabla}$
(C) $\delta=\frac{\nabla}{\sqrt{I-\nabla}}$
(D) $\Delta=\frac{\nabla}{I+\nabla}$
24. The Newton-Raphson method, for finding the roots of the equation $f(x)=0$ converges, if
(A) $\left|f(x) f^{\prime}(x)\right|<\left|f^{\prime \prime}(x)\right|^{2}$
(B) $\left|f(x) f^{\prime \prime}(x)\right|<2\left|f^{\prime}(x)\right|^{2}$
(C) $\left|f(x) f^{\prime \prime}(x)\right|<\left|f^{\prime}(x)\right|^{2}$
(D) none of these
25. If $\Delta^{3}(1-a x)(1-3 x)(1-4 x)=72$ and unity as the interval of differencing, then a is equal to
(A) -1
(B) 1
(C) 2
(D) none of these
26. If $x=\xi$ is a double root of the equation $f(x)=0$, then the iterative formula $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ converges
(A) Linearly
(B) Quadratically
(C) cubically
(D) None of these
27. For the Lagrange's interpolation formula $P_{n}(x)=\sum_{i=0}^{n} l_{i}(x) f_{i}$, an important check during the calculation is
(A) $\quad \sum_{i=0}^{n} l_{i}(x)=0$
(B) $\sum_{i=0}^{n} l_{i}(x)=1$
(C) $\sum_{i=0}^{n} l_{i}(x)=$ cons $\tan t$
(D) $\sum_{i=0}^{n} l_{i}(x)=2$
28. Which of the following is NewtonRaphson's algorithm for finding the cube root of unity of a natural number " N "?
(A) $x_{n+1}=x_{n}-\frac{3 x^{2}}{x_{n}{ }^{3}-N}$
(B)
$x_{n+1}=\frac{1}{3}\left[2 x_{0}-\frac{N}{x_{0}{ }^{2}}\right]$
(C) $x_{n+1}=\frac{1}{3}\left[2 x_{n}+\frac{N}{x_{n}{ }^{2}}\right]$
(D) None of these
29. For certain function $f(x)$, divided differences are given as
$f[-1]=2, f[-1,1]=1, f[-1,1,2]=2$.
Then the value of $f[2]$ is
(A) 11
(B) 12
(C) 14
(D) 13
30. The function $e^{\alpha x} \cos \beta x$ is harmonic function
(A) for all values of α and β
(B) for $\alpha^{2}+\beta^{2}=0$
(C) for $\alpha^{2}-\beta^{2}=0$
(D) None of these
31. If $f(z)=z \operatorname{Re}(z)$ then $f(z)$ is differentiable
(A) for all values of z
(B) only for $z=0$
(C) only at $z=1$
(D) None of these
32. Let $n \in I$. Then $\cos z_{1}=\cos z_{2}$ if and only if $z_{1}+z_{2}$ or $z_{1}-z_{2}$ is
(A) an integral multiple of π
(B) an integral multiple of 2π
(C) an integral multiple of πi
(D) None of these
33. Let the two masses m_{1} and m_{2} are connected by an inextensible string of Length ' L '. Suppose x be the variable vertical distance from the pulley to mass m_{1} and mass m_{2} is at a distance of $L-x$ from the pulley, then Langrangian equation of motion is
(A) $\ddot{x}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} g$
(B) $\ddot{x}=\frac{m_{1}+m_{2}}{m_{1}-m_{2}} g$
(C) $\ddot{x}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}}$
(D) $\ddot{x}=\frac{2 m_{1}}{m_{1}+m_{2}} g$
34. Radial components of the acceleration of a particle is moving along a spiral $r=2 e^{3 \theta}$ with constant angular velocity ω is
(A) $6 \omega^{2} e^{3 \omega t}$
(B) $20 \omega^{2} e^{3 \omega t}$
(C) $16 \omega^{2} e^{3 \omega t}$
(D) None of these
35. Time period for a simple pendulum of length I is
(A) $\pi \sqrt{\frac{l}{g}}$
(B) $2 \pi \sqrt{\frac{l}{g}}$
(C) $2 \pi \sqrt{\frac{g}{l}}$
(D) None of these
36. Given the functional $\int_{a}^{b} \frac{y^{\prime 2}}{x^{3}} d x$
(A) the extremal is $y=\frac{x^{4}}{4}+c_{1}$
(B) the extremal is $y=c x^{2}+c_{1}$
(C) the extremal is $y=\sin x$
(D) the extremal is $y=\cos x$
37. If X is a metric space, and E be subset of X, then
(A) $E=\bar{E}$ if and only if E is closed.
(B) $E=\operatorname{int} A$ if and only if E is open.
(C) both (A) and (B) are true
(D) None of these is true
38. Let $\lim _{n \rightarrow \infty} f_{n}(x)=f(x) ;$ for all x on a set E and if $M_{n}=\sup _{x \in E}\left|f_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$. Then,
(A) $\quad f_{n} \rightarrow f$ uniformly on E.
(B) The series $\sum f_{n}$ always converges uniformly on E.
(C) both (A) and (B) hold
(D) None of these hold
39. Which of the following statement is true?
(A) Every closed subset of a compact metric Space is Compact
(B) Every compact metric space is Separable.
(C) Every compact metric space is complete and totally bounded..
(D) All of these are true
40. Which of the following is not correct?
(A) Every continuous function is Rintegrable.
(B) Every bounded function is R-integrable.
(C) If is R-integrable on a [a,b], then $\mid f$ is also R - integrable .
(D) None of these is correct
41. The value of $\int_{0}^{3}[x] d x$, is
(A) 1
(B) 2
(C) 3
(D) None of these
42. Which of the following is not Riemann integrbleon [0,1].
(A) $f(x)=|x|$
(B) $f(x)= \begin{cases}1 & x \in \text { rational } \\ 0 & x \in \text { irrattional }\end{cases}$
(C) $f(x)=[x]$
(D) all of above

43 The value of the line integral $\oint_{C}\left(-y^{2} d x+x y d y\right)$, where C is the square cut off from the first quadrant by the lines $x=1$ and $y=1$, is
(A) 1
(B) $3 / 2$
(C) $1 / 2$
(D) $5 / 2$
44. Which of the following statement is correct?
(A) A continuous function is always of bounded variation.
(B) A continuous function f defined on [a,b] is of bounded variation if and only if it can be expressed as sum of two monotonic decreasing functions on [a,b].
(C) A bounded monotonic function is a function of bounded variation.
(D) None of these statements are correct.
45. Which of the following statement is true?
(A) Any set with outer measure different from zero is uncountable.
(B) The set is $[0,1]$ countable.
(C) The canter set C is uncountable with outer measure different from zero .
(D) None of these is true.
46. The set of all complex numbers z such that $|z| \leq 1$ is
(A) open
(B) neither open nor closed
(C) Both closed and open
(D) closed

47 The integral $\oint_{C} \frac{1}{z^{2}} d z$, where the contour \mathbf{C} is the ellipse $(x-2)^{2}+\frac{1}{4}(y-5)^{2}=1$ has the value
(A) zero
(B) (B) πi
(C) (C) 2π
(D) none of these
48. The image of the disk $|z-1| \leq 1$ under the mapping $w=\frac{1}{z}$, in the \mathbf{w} plane is
(A) half-plane $u \geq \frac{1}{2}$
(B) half-plane $u \leq \frac{1}{2}$
(C) the circle $|w| \leq 1$
(D) none of these
49. The set of points $z \in C$ for which $|z-2|+|z+2 i|=4$, is the conic
(A) hyperbola
(B) ellipse
(C) square
(D) None of these
50. The upper bound, for the absolute value of the integral $\oint_{C} \frac{e^{z}}{z+1} d z$, where \mathbf{C} is the circle $|z|=4$, is
(A) $\frac{8}{3} \pi e^{4}$
(B) $\frac{1}{3} \pi e$
(C) $8 \pi e^{4}$
(D) None of these
51. The function $w=e^{z}$ is
(A) periodic but not entire
(B) entire non-periodic
(C) neither entire nor periodic
(D) entire and periodic
52. The function $\cos (k z+23)$ is $\mathbf{1 / 2}$ periodic. Then k is equal to
(A) 1
(B) 2
(C) 4π
(D) $4 \pi i$
53. Let f be Lebesgue integrable function. Then which of the following hold?
(A) $|f|$ is always Lebesgue integrable
(B) f is Riemann integrable also.
(C) both (A) and (B) are correct
(D) None of these hold
54. The value of the integral $\int_{C} z^{2} d z$, where \mathbf{C} is the line segment joining $(0,0)$ and $(1,1)$ is
(A) zero
(B) $(1+i)^{3} / 3$
(C) $(1-i) / 3$
(D) None of these
55. The residues at all the singular points of the function $f(z)=\frac{z^{2}}{z^{2}-2 z+2}$ are given by
(A) 1,2
(B) 1,1
(C) 3,2
(D) None of these
56. The bilinear transformation $w=\frac{a z+b}{c z+d}$, whose fixed points are $i,-i$, is represented by
(A) $w=\frac{z-c}{z+c}$
(B) $w=\frac{a z-c}{c z+a}$
(C) $w=\frac{z+c}{z-c}$
(D) None of these
57. Which of following statement (s) is correct?
(A) If function $f(z)=u+i v$ satisfies C-R equations at a point then f is differentiable at that point.
(B) The branch of $w=\log (z+4-i)$ is $x \leq-4, y=0$
(C) The function $e^{\bar{z}}$ is analytic at $\mathrm{z}=0$
(D) The function $\sin \bar{z}$ is nowhere analytic.
58. The coefficient b_{n} in the Fourier Series expansion of the function
$f(x)= \begin{cases}1+\frac{2 x}{\pi}, & \text { for all }-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi}, & \text { for all } 0 \leq x \leq \pi \quad \text { is }\end{cases}$
(A) $\frac{1}{n \pi}\left((-1)^{n}-1\right)$
(B) $\frac{1}{n^{2} \pi^{2}}\left((-1)^{n}-1\right)$
(C) 0
(D) None of these
59. The matrix ($T: B_{1}, B_{2}$) associated with the linear transformation $\mathrm{T}: R^{2} \rightarrow R^{2}$ defined by $\mathrm{T}(x, y)=(x,-y)$ relative to the basis $B_{1}=\{(1,0),(0,1)\}$ and $B_{2}=\{(1,1),(1,-1)\}$ is
(A) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(B) $\left(\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
(C) $\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right)$
(D) $\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right)$
60. Which of the following subsets of R^{3}, under the usual operations of addition and scalar multiplication, is a subspace of R^{3} ?
(A) $U=\{(x, y, z) \mid x y=0\}$
(B) $U=\{(x, y, z) \mid x+y+z \geq 0\}$
(C) $U=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$
(D) None of these
61. A function f defined on a measurable set E of finite measure is Lebesgue integrable if f is
(A) bounded and measurable
(B) unbounded and measurable
(C) bounded and non measurable
(D) None of these
62. The differential equation $x y^{\prime}+2 y \cos y=1$ is
(A) First order, linear and non homogeneous.
(B) First order, nonlinear and homogeneous.
(C) First order, linear and homogeneous.
(D) First order, nonlinear and non homogeneous
63. The Partial Differential Equation (PDE) $\frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$, is
(A) Hyperbolic
(B) Elliptical
(C) Parabolic
(D) (D)None of these
64. The particular integral of PDE $\left(4 D^{2}+D^{\prime 2}-4 D D^{\prime}\right) z=\sin (x+2 y)$ is
(A) $\frac{-x^{2}}{8} \sin (x+2 y)$
(B) $\frac{x^{2}}{8} \sin (x+2 y)$
(C) $\frac{x^{3}}{8} \sin (x+2 y)$
(D) None of these
65. If Wronskian of two solutions of equation $\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0 \quad$ is identically Zero on $\mathrm{a}[\mathrm{a}, \mathrm{b}$], then the solutions are
(A) Linearly dependent
(B) Linearly independent
(C) Linearly dependent if one or both solutions are zero
(D) Can't say
66. Any differential equation $\frac{d y}{d x}=f(x, y)$ represents a
(A) A curve such that tangent to the curve at any point is having slope equal to value of f at that point
(B) A family of curve such that tangent to the curve at any point is having slope equal to value of f at that point
(C) A family of curve such that through every point of $x y$-plane, there passes more than one curve of the family
(D) A family of surfaces
67. If $\frac{1}{x}$ is a one of the solution of the differential equation $x^{2} y^{\prime \prime}+4 x y^{\prime}+2 y=0$, then the second linearly independent solution is
(A) $-1 / x$
(B) $-1 / x^{3}$
(C) $-1 / x^{2}$
(D) None of these
68. The singular integral of PDE $z=p x+q y+\log p q$ is
(A) $z=1-\log x y$
(B) $z=1+\log x y$
(C) $z=-2-\log x y$
(D) None of these
69. The general solution of PDE $p \sqrt{x}+q \sqrt{y}=\sqrt{z}$ is
(A) $x-y=f(z-x)$
(B) $\sqrt{x}-\sqrt{y}=f(\sqrt{x}-\sqrt{z})$
(C) $\sqrt{x}+\sqrt{y}=f(\sqrt{x}+\sqrt{z})$
(D) None of these
70. The complete integral of PDE $x+y=p^{2}+q^{2}$ is
(A) $z=(x+a)^{1 / 3}+(y-a)^{1 / 3}+C$
(B) $z=\frac{2}{3}(x+a)^{1 / 3}+\frac{2}{3}(y-a)^{1 / 3}+C$
(C) $z=\frac{2}{3}(x+a)^{3 / 2}+\frac{2}{3}(y-a)^{3 / 2}+C$
(D) None of these
71. The values of a, b, c for which is the motion defined by the vector field
$\vec{V}=(x+y+a z) i+(b x+2 y-z) j+(x+c y+2 z) k$ is irrotational ?
(A) $1,1,-1$
(B) $-1,1,-1$
(C) $1,-1,-1$
(D) None of these
72. Consider IVP $d y / d x=f(x, y), y\left(x_{0}\right)=y_{0}$ on rectangle $R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b$ where $a, b>0$. If $f(x, y)$ is not continuous in R and does not satisfy the Lipschitz condition $\forall(x, y)$ in R then
(A) Solution can exist and it can be unique
(B) Solution will always exist and will be unique
(C) Solution will always exist but it will not be unique
(D) Solution can exist but it will not be unique.
73. The orthogonal trajectory of the family of the curves $x y=C$ is
(A) $x^{2}+y^{2}=$ constant
(B) $x^{2}-y^{2}=x y$
(C) $x^{2}-y^{2}=$ constant
(D) $x^{2}+y^{2}=x y$
74. A cyclic group with only one generator can have
(A) at most 2 elements
(B) (B)a finite number of elements
(C) a prime number of elements
(D) None of these
75. Which of the following statements is correct?
(A) All finite groups are cyclic
(B) All infinite groups are not cyclic
(C) An infinite cyclic group has only two generators
(D) None of these
76. The order of cyclic subgroup generated by 25 in the cyclic group Z_{30} is
(A) 2
(B) 6
(C) 4
(D) None of these
77. A group of order 45 has a normal subgroup of order
(A) 3
(B) 9
(C) 5
(D) None of these
78. If " R " is a commutative ring with unit element, then
(A) every maximal ideal is prime ideal
(B) every prime ideal is maximal ideal
(C) every ideal is prime ideal
(D) None of these
79. Which of the following statement(s) is incorrect?
(A) every field is a ring
(B) every ring is a group
(C) every integral domain is a field
(D) every field is an integral domain
80. If every element of a group \mathbf{G} is its own inverse, then the group G is
(A) finite
(B) abelian
(C) cyclic
(D) None of these
81. There are 10 lamps in a hall. Each one of them can be switched on independently. The number of ways in which hall can be illuminated is
(A) 10^{2}
(B) 1023
(C) 2^{10}
(D) 10 !
82. What is (?) in the following table?

8	54	27
9	71	$?$
10	90	45

(A) 39
(B) 37
(C) 35.5
(D) 34.5
83. If 'THIS MAN IS GOOD’ is coded as 153. What will be the code for 'THAT MAN IS NOT GOOD'?
(A) 200
(B) 195
(C) 190
(D) 180
84. A earned Rs 84000. One third of it went to taxes. The rest was invested and appreciated by one half. Two third of that went into business. Additional tax was paid equal to $2 / 3$ of the remaining amount. How much money was left with A?
(A) 8790
(B) 8777
(C) 9000
(D) 9333
85. If Aneesh is paternal first cousin of Rahul, how is their father's mother is related to them?
(A) Mother
(B) Grandmother
(C) Paternal aunt
(D) Maternal aunt
86. I got my first job on May 22, 1983. Which day of the week it was?
(A) Monday
(B) Tuesday
(C) Friday
(D) Sunday
87. A petrol dealer adds 20% kerosene oil to petrol. If purchase price of petrol is Rs. 60 per litre and that of kerosene is Rs. 20 per litre, and sale price of the petrol is Rs. 61 per litre, what is his percentage profit?
(A) 14.25
(B) 14.37
(C) 14.50
(D) 14.70
88. Anant parked his motorcycle at $9^{\text {th }}$ place from the left and $28^{\text {th }}$ from the right. How many motorcycles are parked in the row?
(A) 37
(B) 36
(C) 35
(D) 34
89. In an imaginary language digits $0,1,2,3,4$, $5,6,7,8$ and 9 are substituted by $t, d, j, 0, r$, $\mathrm{m}, \mathrm{u}, \mathrm{x}, \mathrm{b}$ and z .10 is written as dt and so on. Use the above information and find the value of expression given below:

$$
\{(o r-d j) \times u\} \div d j
$$

(A) 9
(B) 10
(C) 11
(D) 12
90. Seven friends meet at their college reunion, shake hand with each other once. How many hand shake will be there altogether?
(A) 21
(B) 42
(C) 27
(D) 49

91 Ms Anandita starts at left and moves 8 Kms. She then turns right and moves 4 Kms. Then she turns right again for 8 Kms . How far is she from the initial position?
(A) 20 Kms
(B) 10 Kms
(C) 08 Kms
(D) 04 Kms
92. Lunch-dinner pattern of a person for ' m ' days is given below. He has a choice of VEG or NON-VEG meal for his lunch/dinner.
(i) If he takes a NON-VEG lunch, he will have only VEG dinner
(ii) He takes NON-VEG dinner for 9 days
(iii) He takes VEG lunch for 11 days
(iv) He takes a total of 14 NON-VEG meals

What is ' m '?
(A) 18
(B) 20
(C) 24
(D) 38
93. 20\% students of a particular course get jobs within one year of passing. 20% of the remaining students get jobs by end of the second year of passing. If 16 students are still jobless, how many students had passed the course?
(A) 25
(B) 50
(C) 62
(D) 84
94. How many rectangles (which are not squares) in the following figure?:

(A) 56
(B) 70
(C) 80
(D) 96
95. Water is flowing through a tube as shown below:

The cross-sectional area of A and C are equal and greater than the cross-sectional area of B. If the flow of water is steady, than the pressure on the walls at B is
(A) less than that at A and that at C
(B) more than that at A and that at C
(C) same as that at A and that at C
(D) more than that at A but less than that at C

96 Processor IC chip was developed by?
(A) AMD
(B) Intel
(C) DIX
(D) Both (A) and (B)

97 If $5472=9,6342=6,7584=6$. What is 9236?
(A) 2
(B) 3
(C) 4
(D) 5

98 Chipko movement was started by?
(A) Arundhati Roy
(B) Medha Patkar
(C) Ila Bhatt
(D) Sunder lal Bahuguna

99 What is the following is not a natural hazard?
(A) Earthquake
(B) Tsunami
(C) Flash floods
(D) Nuclear accident

100 Which of the following team won the $9^{\text {th }}$ IPL cricket T-20 tournament?
(A) Kolkata Knight Riders
(B) Sun Risers Hyderabad
(C) Mumbai Indians
(D) Royal Challengers Bangalore

