INSTRUMENTATION SYSTEM DESIGN IE-8101

LTP 310

Unit I

Introduction: Concept of generalized measurement system, functional elements, generalized input-output configuration, static sensitivity, drifts, linearity, hysteresis, threshold, resolution, static stiffness and input-output impedance. (12 Hrs)

Unit II Transducers (Part-1): Operating principle, construction and design of variable resistive transducers, variable inductive transducers, variable capacitive transducers, piezoelectric transducers, magnetostrictive transducers, Hall effect, eddy current, ionization, optical transducers, digital transducers, single shaft encoders, photo voltaic cell, photo conductive. photo emissive, fiber optic sensors, concept of smart and intelligent sensor, bio-sensors

Transducers (Part-2): Construction and performance of industrially important transducer for measuring displacement, speed, vibrations, temperature, electrical power, strain, torque force, Design of intelligent instrumentation system

Signal Conditioning & Recording: Quarter, half and full bridge circuit, active filters, differential instrumentation amplifiers, carrier amplifiers, design of display elements, LED, bar graph displays, LCDs, nixie tube and their interfacing

(12 Hrs)

(12 Hrs)

RECOMMENDED BOOKS: Title Text Books	Author	Publisher
Measurement Systems Application and Design	E.O. Dobelin	McGraw Hill
Hand Book of transducer Reference Books	Nortan	PHI
Process and industrial instrumentation Principles of Measurement Systems	Conside Bentley	Mc Graw Hill Pearson Education

(12 Hrs)

Unit IV

Unit III

IE-8102 MICROCONTROLLERS AND EMBEDDED SYSTEMS

L T P 3 1 0

<u>Unit I</u>

Introduction: Microprocessor, Micro-controllers and their comparison.

(06 Hrs) **The 8051 Architecture:** Introduction, 8051 micro-controller hardware, input/ output, pins, ports and circuits, external memory, counters and timers, serial data input/ output, interrupts (06 Hrs)

<u>Unit II</u>

8051 Assembly Language Programming: The mechanics of programming, assembly language programming process, programming tools and techniques, instruction set (data moving, logical operations, arithmetic operations, jump and call instructions)

Unit III 8051 Microcontroller Design: Micro-controller specification, external memory and memory space decoding, reset and clock circuits, expanding I/O, memory mapped I/O, memory address decoding, memory access times, testing the design, timing subroutines, lookup tables for the 8051, serial data transmission

<u>Unit IV</u> **Microcontroller Applications:** Interfacing keyboards, displays, D/A and A/D, multiple interrupts, serial data communications, introduction to the use of assemblers and simulators (06 Hrs)

Embedded Systems: Introduction to PLDs and FPGA- architecture, technology and design issues, implementation of 8051 core

(06 Hrs)

RECOMMENDED BOOKS: Title	Author	Publisher
Text Books		
The 8051 Micro Controller- Architecture,	Kenneth J Ayola	Penram International
Programming and Application		Publication
Design with Micro Controller	John B Peatman.	MC Graw Hill
Reference books		
Advanced Microprocessors &	A K Ray & K M	ТМН
Peripherals; Architecture, Programming	Bhurchandi,	
& Interfacing		
The 8051 Micro-controller & Embedded	M A Mazidi and J G	Pearson Education
System	Mazidi,	

(12 Hrs)

(12 Hrs)

NON LINEAR AND ADAPTIVE CONTROL IE-8103

LTP 310

Unit I

State Variable Analysis and Design: Review of state space representation for linear continuous system, solution of linear time invariant state equations, controllability and observability.

Unit II

Non-Linear Control System: Introduction to non-linear feedback control system, Common physical non-linearities, special features of non-linear system, limit cycle, jump response, sub harmonics etc, stability of non-linear systems

(06 Hrs) Describing Functions: Definition, describing function for common physical non-linearities, describing function method for stability analysis, limit cycle and limitations of describing functions

Unit III Phase plane analysis: Basic concepts of phase plane analysis, Phase portraits and their construction. Singular points & system analysis using phase plane technique.

(06 Hrs) Liapunov's Stability Analysis: Concept of local, globe, asymptotic & total stability of nonlinear system, Stability theorems of Liapunov for non-linear system. Liapunov;s Direct method of stability, Generation of Liapunov's function by Krosovskii's & Variable gradient method. Popov; stability theorem for N.L. system

Adaptive and Learning Control Systems: Basic principles of Adaptive and Learning Control Systems, Model reference adaptive control, types of learning-supervised and unsupervised leaning control systems, On-line and off-line learning control systems

(12 Hrs)

RECOMMENDED BOOKS: Publisher Title Author Text Books Modern Control Engineering Ogata PHI Control System Engineering Nagrath & Gopal **Reference Books** Norman S Nise Control System Engineering Wilev Modern Control System R C Drof, R H Bishop

Unit IV

(06 Hrs)

Wiley Eastern

Addision Wesley

Credits:4

(12 Hrs)

IE-8104 DIGITAL SIGNAL PROCESSING

LTP 310

Unit I

Introduction: Signals, Systems and Signal processing, Classification of Signals, Concept of frequency in continuous time and discrete time signals.

(06 Hrs) **Discrete Time Signals & Systems:** Discrete time signals, Discrete time systems, Analysis of discrete time linear time-invariant systems, Discrete time systems described by difference equations, Implementation of discrete system, Correlation of discrete time signals.

Unit II **Z-Transform:** The Z-transformation, properties of Z-transformation, Rational Ztransformation, Inversion of Z-transform, Analysis of linear time invariant systems in Zdomain.

Frequency Analysis Of Signals & Systems: Frequency analysis of continuous time signals, Frequency analysis of discrete time signals, Properties of Fourier Transform for discrete time signals, Frequency domain characteristics of linear time invariant systems, linear invariant systems as frequency selective filters, Inverse systems and de-convolution.

<u>Unit III</u> The Discrete Fourier Transform: Frequency domain sampling, Properties of DFT, Linear filtering methods based on DFT, Frequency analysis of signals using the DFT.

Design Of Digital Filters: General considerations, Design of FIR filters, Design of IIR filters from analog filters, Frequency transformations, Design of digital filters based on least-square method, CAD design of IIR digital filters, CAD for FIR digital filters, CAD design using windows, Comparison of IIR & FIR filters.

(12 Hrs)

RECOMMENDED Title Text books	BOOKS:		Author	Publisher	
Digital Signal Proc Digital Signal Proc Reference Books	essing		Oppenheim & Schafer Kuo	PHI McGraw Hill	
Fundamentals of E Understanding Processing)SP Digital	Signal	Proakais Richard G Lyons	PHI Pearson Educa Publications	ation

Unit IV

(06 Hrs)

(06 Hrs)

Credits:4

(06 Hrs)

IE-8105A OPTO ELECTRONICS

LTP 310

Unit I

Introduction: Optical fiber transmission link, Basic optical laws and definitions, various types of polarization

Optical Sources: Review of semiconductor physics, LEDs- structures, materials, internal quantum efficiency, modulation capability, transient response & power bandwidth product

Unit II Laser Diodes: Types of lasers, theory of laser action in semiconductors, laser diode structures radiation pattern, modes, and single mode lasers, modulation of laser diodes & temperature effects, light source linearity, noises in laser diodes

(06 Hrs) **Power Launching and Coupling:** Source to fiber power launching, source output pattern, power coupling calculation, equilibrium N.A., lensing schemes for coupling improvement optical fibre connectors

Unit III Photo Detectors: Physical principles of photodiodes, pin photo detectors and avalanche photo diodes, photo detector noise, detector response time, avalanche multiplication theory and noise, ADD bandwidth

Optical Fiber: Fiber types, propagation of light through fiber, Ray & mode theory, Fiber materials and fiber optic cables, signal attenuation and signal distortion in optical waveguides, optimal design of single mode fibers, Step index fiber structure, Ray optics representation, wave representation, Maxwell's equation's, wave guides equations, wave equations for step index fibers, Modal equation, Modes in step index fibers, SMFs- Mode Field Dia & progal modes, Graded index fiber structure, N.A. modes in graded index fiber.

Holography: Principle of holography, theory, requirements and applications

(04 Hrs)

(08 Hrs)

RECOMMENDED BOOKS: Title Text Books	Author	Publisher
Optical fibre communication systems	William B. Jones Jr.	Holt , Rinehart and Winston,
Optical electronics	A.K.Ghatak, K. Thyrgarajan	Manas Saikia foundation books
Reference Books		
Optical communication systems Optical fibre communications	John Gowar Gerd Keiser	PHI Mc Graw Hill

Unit IV

(06 Hrs)

(12 Hrs)

(06 Hrs)

(06 Hrs)

IE-8105B INSTRUMENTATION FOR ENVIRONMENTAL ENGINEERING

LTP 310

Introduction: Source and classification of Air Pollution, Effect of Air Pollution in Human Health, Effect of Air Pollution on Animals, Effect of Air Pollution on Plants

Unit II Economic Effect and Control of Pollution: Economics Effects of Air Pollution, Control of Air Pollution by Equipment, Control of Air Pollution by Process Changes, Air Pollution from Major Industrial Operations, Air Pollution legislation and regulation, Environment Protection Act, Air Pollution in Indian cities, Water & Noise Pollution. & its control, Green House effects & its control (12 Hrs)

Unit III Pollution Control For Specific Pollutants: Industrial Pollution Emission and Indian Standards, Analysis of Pollutants, Control of BOD, Removal of Chromium, Removal of Mercury, Removal of Ammonia / urea, Treatment of Phenolic Effects, Removal of particular matter, Removal of Sulphur Dioxide, Removal of Oxides of Nitrogen, Removal of Vapour from Efficient case, Control of CO2 and CO

Pollution Control In Selected Process Industries: General considerations of Pollution Control in Chemical Industries, Pollution Control aspects of fertilizer industries, Pollution Control in Petroleum & Petrochemical Units, Pollution Control in Pulp & Paper Industries, Tanning Industries, Sugar Industries, Alcohol Industries, Electroplating & Metal Finishing Industries, Radioactive Wastes, Pollution Control methods used in Power Plants

(12 Hrs)

RECOMMENDED BOOKS: Title	Author	Publisher
Text Books Environmental Air Pollution & its	G.R. Chhatwal & Others	Anmol Publication
control		
Pollution Control in Process	S P Mahayar	McGraw Hill
Industries Reference Books		
Environmental Water Pollution &	G R Chhatwal, M.C.	Anmol Publication
its control Air Pollution	Mehra H V Rao	McGraw Hill

Unit IV

Unit I

(12 Hrs)

Credits:4

IE-8105C

ANALYTICAL INSTRUMENTATION

L T P 3 1 0

<u>Unit I</u>

Introduction: Basics of physical methods of chemical analysis, Spectral method of analysis, basic techniques, terminology, units, interaction of emf radiation with matter, emission, absorption and scattering, various light sources, design consideration of analytic laboratory (12 Hrs)

Spectrophotometers: Visible, UV and IR type of spectrophotometer, Atomic Absorption, Mass spectrometer, NMR and X-ray and related instrumentation, comparison of various spectral analysis techniques, data processing techniques and various detectors for these instruments

Unit III Chromatography: Basics of Chromatography, various types of chromatography and their related instrumentation, liquid chromatography & HPLC

<u>Unit IV</u> Electron Microscopy: Introduction to electron microscopy- SEM and TEM type of electron microscope, Difference between light microscopy, SEM and TEM

Data Presentation & Analysis: Analytical data presentation, Error analysis

(06 Hrs)

RECOMMENDED BOOKS		
Title	Author	Publisher
Text Books		
Handbook of analytical instruments	R.S. Khandpur	Tata McGraw Hill
Instrumental methods of analysis	H.H.Willaird, Lynnel	Wadsworth
	Merriktt Jr., John A.	Publishing Company
	Dean, F.A. Settle Jr	
Reference Books		
Introduction to instrumental analysis	Robert D. Brawn	McGraw Hill Co
Instrumental method of chemical	Galen W. E.wing,	McGraw Hill
analysis		

Unit II

(12 Hrs)

Credits:4

(12 Hrs)

IE-8105D POWER PLANT INSTRUMENTATION

L T P 3 1 0

<u>Unit I</u>

Introduction: Resources and development of power in India, various types of power plants, present energy scenarios in India

Hydro-Power Plant: Hydrology, site selection of site for hydroelectric power plant, essential features/elements of hydroelectric power plant, classification, hydro turbines, governing of hydroelectric turbines

<u>Unit II</u> Steam power plant: Classification, fuel handling, combustion equipments for steam boilers, classification of boilers and their accessories, ash handling, steam turbines, classification, advantages, steam turbine governing and control, feed water treatment for steam power plant

Unit III Nuclear Power Plant: Element and layout of Nuclear power plant, Generation of Nuclear energy by fission, Nuclear reactor, Types and the applications, Nuclear waste and its disposal

Plant Instrumentation: Significance of measurement and Instrumentation in Electric power plant, Measurement of water purity, Gas Analysis, Oxygen and Carbon dioxide Measurement of Smoke and Dust, Nuclear Measurements

(12 Hrs)

RECOMMENDED BOOKS		
Title	Author	Publisher
Text Books		
Power Plant Engineering	Varma	Metroplitan Publication
Power Plant Engineering	R.K Rajput	Laxmi Publishers
Reference Books		
Nuclear Power	Loftness D Van Nostrand	McGraw Hill
Nuclear power plant System	Lish	Industrial press
and Equipment		

<u>Unit IV</u>

(12 Hrs)

(12 Hrs)

(06 Hrs)

Credits:4

LTP 310

IE-8105E

Unit I

Introduction: Various Sources of Energy, Conventional and non- Conventional energy, Concept and Classification of Renewable energy, Concept of Energy Conservation and Energy Management, Present Energy Scenario in India (Conventional and non-Conventional energy)

Unit II Renewable Energy Sources: Potential and Utilization status of Renewable Energy in India, Solar Energy: Solar Water Heater Systems, Solar Air dryer Systems, Solar Photo-voltaic Systems, Solar Cookers and Solar ponds, Wind Energy: Selection Criteria for Wind farms, Wind Mills, Bio Gas Plants-Construction and Operation, Bio Mass Gasification, Bio Mass Briguetting; Mini and Micro Hydel Power Plants, Geo-Thermal Energy, Ocean Energy

Unit III Energy Conservation and Management (Unit-I): Actual energy requirement assessment techniques of any industry and energy consumption status, possibility of reduction of energy consumption by using various energy conservation techniques or equipments e.g. variable speed drives, constant voltage transformers, electronic chokes, CFLs etc.

(12 Hrs)

Unit IV

Energy Conservation and Management (Unit-II): Importance of instrumentation and control techniques in the energy conservation and management, SCADA systems, Instruments required to carry out energy audit exercise, optimal mixing of renewable energy sources and load rationalization for reducing load on conventional energy sources

(12 Hrs)

RECOMMENDED BOOKS:		
Title	Author	Publisher
Text Books		
Solar Energy & Energy	Sawhney & Maheshwari	PHI
Conservation	-	
Energy Technology	S Rao & B. B. Parulkar	Khanna Publishers
Reference Books		
Solar Energy	S. P. Sukhatme	ТМН
Hand Book of Industrial Energy	S David	Van Nostrand Reinhold
Conservation		Publishing Company
		• • •

(12 Hrs)

Credits:4

IE-8105F **DATA COMMUNICATION**

L T P 3 1 0		Cre	edits:4
Introduction: Basic Concepts of analy Analog and digital transmission, transm Transmission Media: Guided and U Media Computerization Encoding and Modulating: Digital –te	ission impairments n-guided media, Perfori <u>Unit II</u>	mance, Shannon	(06 Hrs) Capacity, (06 Hrs)
Digital to Analog conversion, Analog to Analog to Analog Digital Data Communication: Digital of 530, X.21, Modems, Cable Modems	Ū	CE Interface, EIA-	(06 Hrs) 449, EIA- (06 Hrs)
<u>Unit III</u> Multiplexing And Switching: FDM, WDM,TD, Multiplexing application- telephone systems, DSL, Par Circuit switching, Packet Switching & Message switching virtual circuits (06 Hrs)			
Spread Spectrum: Concept, Frequence spectrum, code division Multiple Access Error Detection and Correction: Type	<u>Unit IV</u>		(06 Hrs)
Error Correction Protocol Architecture: Protocols, Stan	idards, OSI, TCP/IP Proto	ocol Architecture	(06 Hrs) (06 Hrs)
RECOMMENDED BOOKS Title Text Books Data Communication and Distributed	Author Ulylers D Balck	Publisher PHI	

Networks Computer Networks Andrew S. Teanebaum PHI **Reference Books** Data and Computer Communication William Stallings Pearson Education Communications and Behrouz A Ferouzan-ТМН Data Networking

DSL, Par Circuit switching, Packet Switching & Message switching virtual circuits	>,
(06 Hrs	3)
Spread Spectrum: Concept, Frequency hoping spread spectrum, direct sequence sprea spectrum, code division Multiple Access	d
(06 Hrs	;)

΄,

IE-8105G COMPUTERS IN BIOMEDICAL ENGINEERING

L T P 3 1 0

<u>Unit I</u>

Computer In Data Collection: Introduction, Basic Building Blocks of Data Acquisition Systems, Use of Computers in Physiological Data Acquisition, Off –Line Data Collection, Data Collection Techniques, Patient Data Base, computerized Medical Records

(12 Hrs)

Credits:4

Hospital Data Management: Hospital Information System, Functional capabilities of Computerized Hospital Information System, Efficiency, Security and Cost Effectiveness of Computer Records, Computerized Patient Data Management

Unit II

(12 Hrs)

<u>Unit III</u>

Bio-Signal Analysis: Computerized Electrocardiography, Holter Electro-cardiography, Electromyography, Electroencephalography and Echocardiography, Computer Analysis of Non-Electrical Signals, Computer Aided Medical Decision Making

(06 Hrs) **Medical Imaging:** Introduction to Medical Imaging, Computers in Medical Imaging, Computerized Ultrasonography, X-Rays, Computerized Tomography, Computerized Emission Tomography

(06 Hrs)

Unit IV

Aids for Handicapped: Computer aids for blind and visually handicapped and deaf

(06 Hrs) **Medical Research:** Computers in simulation, modeling and analysis of bio-systems, On-line Interactive systems with patients for analysis and research, introduction to expert system

RECOMMENDED BOOKS Title	Author	Publisher
Text Books Handbook of Biomedical Instrumentation Biomedical Engineering Handbook	R S Khandpur Joseph P Bronzino	TMH CRC Press
Reference Books Design Engineering of Biomaterials for Medical Devices	David Hill	Wiley International
Biomedical Signal Processing	Metin Akay	Academic Press

OPTIMAL AND ROBUST CONTROL SYSTEM IE-8201

LTP 310

Unit I

Introduction and Parametric Optimization: Introduction to optimal control problems, Classification of optimal control problems, performance indices for optimal control and their selection, Dynamic optimization using.

(06 Hrs) Calculus of variations: Lagrange multiplier, Euler Lagrange's equation for different conditions, Transversality conditions, Dynamic optimization with equality and inequality constraints

Unit II Pontryegans Max/min Principle: Optimization using Pontryegans maximum (minimum) principles with special emphasis on Bang-Bang type system

Dynamic Programming in Continuous Time: Developments of Hamilton Jacobi equation, Matrix Riccati equation, Optimal control based on guadratic performance indices, Linear regulator and servomechanism problem

Dynamic programming in Discrete System: Dynamic programming multi stage decision processes in continuous time. Principle of causality, Invariant inbedding & optimality

(06 Hrs) Iterative Method of Optimization: Optimization using gradient methods and interactive techniques (steepest descent), Newton Raphson and Fletcher Powell. Introduction to multivariable system and decoupling, Introduction to Optimal Filters (Kalman Filter)

Unit IV **Robust Control System:** Introduction, Robust Control System and System sensitivity, Analysis of Robustness, system with uncertain parameters, the design of robust control system, PID controllers, the design of robust PID controlled systems, design examples

(12 Hrs)

(06 Hrs)

RECOMMENDED BOOKS Title Text Books	Author	Publisher
Modern Control System Theory Modern Control Systems 8 th Ed Reference Books	M Gopal Richard C Drof & R H Bishop	Wiley Eastern Addision Wesley
Optimum Systems COntrol Optimum System Control	Andrew P Sage & C C White-III B D O Anderson & B Moree	PHI PHI

Unit III

(06 Hrs)

Credits:4

(06 Hrs)

IE-8202 TELEMETRY AND REMOTE CONTROL

LTP 310

Unit I Introduction: Introduction, classification and importance of telemetry, remote control, remote signaling, messages & signals, signal formation, conversion & transmission

Unit II Signal Transmission Techniques: Analog, pulse, digital modulation, amplitude modulation, AM transmitters and receivers, frequency modulation, FM transmitters & receivers, phase modulation, pulse modulation techniques, digital transmission techniques, error detecting & correcting codes

Unit III Signal Transmission Media: Wires & cables, power line carrier communication, terrestrial & satellite radio links, optical fiber communication, multiplexing- TDM, FDM & WDM

(06 Hrs) Remote Control & Remote Signaling: Principle of independent messages and combinational principle, multi-wire, FDM & TDM scheme

Unit IV Supervisory Control & Data Acquisition: Layout, functions & operation of SCADA system, remote terminal unit details, control center details, communication between control centers, communication between control center & remote terminal units, introduction to internet based telemetrv

RECOMMENDED BOOKS Title Author Publisher Text books Telemetry Principle D Patronabis TMH Handbook of telemetry & Remote Elliot L Gruenberg McGraw Hill Control Reference books Fundamentals of automation & remote Ginzberg, Lekhtman & Mir Publishers Malov control Tersen Legrell PHI Power System Control Technology

(06 Hrs)

(12 Hrs)

(12 Hrs)

Credits:4

IE-8203 INDUSTRIAL PROCESS CONTROL

LTP 310

Unit I Description And Modeling Of Various Industrial Processes: Model Classification, Mathematical Models, Physical Models, Analog Models, Estimation of Model Parameters, System Identification, Experimental Nature of Simulation, Steps Involved in Simulation Studies, Validation of Simulation Models, Computer Simulation of Continuous and Discrete Systems, Examples

Unit II **Process Control:** Types and Description of Processes, Blending, batch processes, compressor & chiller controls, distillation control, steam turbine & water treatment controls, boiler controls. reactor controls

Unit III Conventional Controllers: On-off Controllers, Cascade and Feed forward Controllers, Split Range Controllers, ratio controls, Single loop, multi loop & self tuning controllers, set point control (SPC), discrete digital control (DDC)

Intelligent Controllers: Fuzzy logic control, programmable logic controllers, PC based system, conventional and widows NT based DCS systems, artificial intelligence & neural networks, smart & intelligent transmitters

RECOMMENDED BOOKS Publisher Title Author Text Books Industrial Padmanabhan Springer Publishing Process Instrumentation and control Applied Instrumentation in W.G. Andrew & H.B. Gulf Publishing, Houston the Process Industries Williams **Reference books** Instrumentation Reference B.E. Nolting Elsevier India Pvt ,New Book Delhi Engineer's B.G. Liptak Elsevier India Pvt ,New Instrument Handbook (Process Control) Delhi

Unit IV

(12 Hrs)

Credits:4

(12 Hrs)

(12 Hrs)

IE-8204 BIOMEDICAL INSTRUMENTATION AND TELEMEDICINE

LTP 310

Unit I

Human Body Subsystems: Brief description of neuronal, muscular, cardiovascular and respiratory systems, their electrical, mechanical and chemical activities

(04 Hrs) Biomedical Sensors: Principles and classification of transducers for biomedical applications, electrode theory, different types of electrodes, selection criteria for transducer and electrodes

(04 Hrs) Electrical Activity of Heart: Cardiac system, bipolar and unipolar lead system, Einthoven triangle, electrodes, electrocardiogram-normal and abnormal, exercise ECG lead positioning, electrode positioning for Holter ECG recording, vector cardiography, inverse cardiography, signal conditioning and processing

Unit II

Electrical Activity Of Neuromuscular System: Muscular system, electrical signals of motor unit and gross muscle, human motor coordination system, electrodes, correlation of force and work, EMG integrators, signal conditioning and processing

Electrical Activity of Brain: Sources of brain potentials, generation of signals, component waves, EEG recording electrodes, 10-20 electrode system, EEG under normal, grand mal and Petit mal seizures, signals conditioning and processing

Unit III Electrical Signals From Visual System: Sources of electrical signals in eye, generation of signals, electro-retinogram, electro-occulogram

(06 Hrs) Noise And Interference In Bioelectrical Signals: Sources on noise in bioelectrical signals recordings, filtering techniques-active and passive filters, digital filtering, grounding and shielding

(06 Hrs)

Unit IV

Introduction to Telemedicine: Telemedicine System's classification, input and output peripherals, Characteristic of available transmission media, introduction to communication system for telemedicine. Medical image format standards, introduction to DICOM and PACs technologies various image compression techniques, loss less and lossy image compression for biomedical application. Telemedicine and law, confidentiality of telemedicine records, security in medical methods

(12 Hrs)

RECOMMENDED BOOKS Title Text Books	Author	Publisher
Design of microprocessor based medical instrumentation	W. T. Webster, J. G. Tompkins	Englewood Cliffs
Handbook of Biomedical Instrumentation Reference Books	R. S Khandpur	ТМН
Biomedical Transducers and Instruments The Biomedical Engineering Hand Book	Tatsuo, Togato & Toshiya Joseph P Bronzino	CRC Press CRC Press

(06 Hrs)

(04 Hrs)

Credits:4

IE-8205A INDUSTRIAL ELECTRONICS

LTP 310

Unit I

Introduction: Review of semiconductor power devices (Power diodes, Power Transistors, MOSFETS, IGBT, SCR, GTO, MCT, DIAC, TRAIC, PUT, SUS, SCS), Review of choppers, converters, inverters, cyclo-converters

Closed Loop Control Of Dc Drives: Single Quadrant variable speed drives; Four Quadrant variable speed drives, Armature voltage control at constant field, field weakening, details of various blocks of closed loop drives; drive employing armature reversal by a contactor, drive employing a dual converter with non- simultaneous and simultaneous control

Unit II

Unit III Frequency Controlled Induction Motor Drives: Control of IM by VSI-3 phase VSI, six step inverter voltage control, PWM inverter, breaking and multiquadrant control, VSI variable frequency drives; control of IM by CSI- 3 phase CSI, current sources, Braking, PWM in a thyristor CSI, PWM GTO CSI, CSI variable frequency drives

Self -Controlled Synchronous Motor Drives: Self control, brushless & commutator-less, DC & AC motors synchronous motor control-operation of a wound field and permanent magnet synchronous motor from a variable frequency current source; source, permanent magnet, operation of a permanent magnet motor at the maximum torque to armature current ratio and at the maximum torgue to flux ratio; operation of self controlled synchronous motor drives- CSI drives, VSI drives, cyclo-converters drives, brush-less and commutator-less AC & DC motor drives and their applications

(12 Hrs)

RECOMMENDED BOOKS Publisher Author Text Books G.K.Dubey Prentice Hall Inc. Morris McGraw-Hill

> Mc Graw- Hill TMH

Unit IV

Title

Power semiconductor drives Industrial Electronics **Reference Books** Industrial Electronics **Power Electronics**

Frank D. Petruzella P C Sen

(12 Hrs)

(12 Hrs)

(12 Hrs)

ROBOTICS ENGINEERING

L T P 3 1 0

IE-8205B

<u>Unit I</u>

Introduction: Basic concepts, Robot anatomy, Robot configurations, Basic Robot motions, Types of drives, manipulator end effectors, controller, power unit

(06 Hrs) **Transformations and Kinematics:** Vector operations, Translational transformations and Rotational transformations, Properties of transformation matrices, Homogeneous transformations and Manipulator, Forward solution, Inverse solution

<u>Unit II</u> Sensory Devices: Non optical and optical position sensors, Range, Proximity, touch, slip, Machine vision, Image components, Representation, Hardware, picture coding, object recognition and categorization, soft ware consideration

<u>Unit III</u> Controls and End Effectors: Control system concepts, Analysis, control of joints, adaptive and optimal control, End effectors, classification, Mechanical, Magnetic, Vacuum, Adhesive, Drive systems, Force analysis and gripper design

<u>Unit IV</u> **Robot Programming:** Methods, Languages, types of programming, Robotic programming languages

(06 Hrs) **Robot Applications:** Applications of robotics in material handling, machine loading and unloading, processing applications, welding and painting assembly and inspection, future robotic applications and related technologies developments

(06 Hrs)

RECOMMENDED BOOKS Title Text Books	Author	Publisher
Robot engineering an integrated approach Robotics for Engineering Reference Books	R D Klafter T A Cmielewski and M Negin Yorem Korem	Prentice hall of India Mc Graw Hill
Industrial Robotics	Groover,W Nagel & Odrey	Mc Graw Hill
Introduction to robotics mechanics & control	J Craigj	Addison Wesley

(12 Hrs)

(06 Hrs)

(12 Hrs)

IE-8205C COMPUTATIONAL ELECTROMAGNETICS

LTP 310

Unit I

Introduction: Conventional design methodology, Computer aided design aspects -Advantages

(04 Hrs) Electromagnetic and Electrostatics: Basic field equations, calculation of field distribution, flux linkage, Voltage induced, inductance, capacitance, and force/torque. Electric and magnetic potentials, boundary conditions, Maxwell's equations, diffusion equation

Unit II

CAD packages: Recent developments, processing, modeling, material characteristics, problem formulation, solution, post processing, commercial packages

(06 Hrs) Finite Difference Analysis-FDM: Finite Difference Method (FDM): Finite Difference schemes, treatment of irregular boundaries, accuracy and stability of FD solutions, Finite-Difference Time-Domain (FDTD) method

Unit III Finite Element Analysis-FEM: Finite Element Method (FEM): overview of FEM, Variational and Galerkin Methods, shape functions, lower and higher order elements, vector elements, 2D and 3D finite elements, efficient finite element computations

Special Topics: hybrid methods, coupled circuit - field computations, electromagnetic thermal and electromagnetic - structural coupled computations, solution of equations

(06 Hrs) Applications: Applications: low frequency electrical devices, static / time-harmonic / transient problems in transformers, rotating machines, actuators

(06 Hrs)

RECOM	MENDED	BOOKS					
Title					Author		Publisher
Text Boo	oks						
The F	Finite	Element	metho	d in	J. Jin		John Wiley & sons
electroma	agnetics						
Finite Ele	ements in	Electric and	Magne	tic field	M.V.K.	Chari,	John Wiley
Problems	5				P.P. Silves	ster	
Reference	ce Books	6					
Compute	er Aided	l Design	in Ma	gnetics	D.A. Low	ther &	Verlog New York
Springer					P.P. Silves	ster	
Finite Ele	ement for	Electrical En	gineers		P.P. Silve	ester &	Cambridge
					Ferrari		University Press

Unit IV

(06 Hrs)

(12 Hrs)

(08 Hrs)

IE-8205D OPTIMIZATION TECHNIQUES

LTP 310

Optimization Problem: Definition, types, optimality criteria, single-variable optimization, exhaustive search, region elimination, fibonacci search and golden section search, cubic interpolation method, Newton-Raphson bisector and secant method

Unit II Multivariable Optimization Algorithms: Direct search methods-evolutionary simplex, Hooke-Jeeves pattern search, Gradient Based Method- Steepest method, Newton conjugate gradient method

Unit III **Constrained Optimization:** Kuhn Tucker condition, transformation methods, penalty function, method of multipliers, sensitivity analysis, interior point optimization

Unit IV Non-Traditional Optimization: Genetic Algorithms for constrained optimization, simulated

annealing, Multi Objectives Optimization Problems, weighting method, ∈-constrained method, decision-making, min-max problem

RECOMMENDED BOOKS				
Title	Author		Publishe	r
Text Books				
Optimization for Engineering Design	Kalyanmoy Deb		PHI	
Algorithms and Examples Multi Objective Optimization using	Kalvanmav	Dob	Wilov	
Evolutionary Algorithms	Kalyanmoy Chichester, UK,	Deb,	Wiley	
Reference Books	••••••••••••••••••			
Emerging Optimization Techniques in	Godfrey G Onubolu		Imperial	College
Production Planning & Control			Press	
Modern Optimization Techniques in	Yong Hua Song, Kluv	ver	Academic	
Power Systems			Publisher	S

Unit I

(12 Hrs)

(12 Hrs)

(12 Hrs)

(12 Hrs)

IE-8205E CONTROL SYSTEM DESIGN

LTP 310

Unit I Introduction: Control System Architecture, Design Specifications Functional in-equally specifications, multi-criteria optimization, norms of scalar & vector signals, norms of SISO LTI & MIMO LTI systems, state space methods for computing norms, design specifications as sets, affine & convex sets and functions, closed loop convex design specifications, convexity & duality

Unit II Design Specifications: Reliability & closed loop stability, I/O specifications, regulation specifications, actuator effort, combined effect of disturbances & commands, differential sensitivity specifications, robustness specifications via gain bounds

Unit III Compensators & Controllers Design: Selection criteria and design of lead, lag, lead-lag and cascade type of compensators using Root locus & Bode plots, Rate feedback. Controllers - configuration and fundamentals of design, cascade and feed back compensation using various controllers

Unit IV State Variable Feed Back Design: Introduction to state variable analysis, controllability and observability, state feed back for SISO system, state feed back design of SISO system using control canonical form. State variable feedback steady state error analysis, Use of steady state error coefficients, design of state observers, Introduction to design of MIMO systems. Introduction to design of non-linear system and software

(12 Hrs)

RECOMMENDED BOOKS		
Title	Author	Publisher
Text Books		
Linear control analysis & design	By John J. D'azzo & C. H. Houpis	Mc-graw Hill
Control Systems – Principle & Design Reference Books	M. Gopal	TMH publication
Linear controller designs – limits of performance	Stephen P. Boyd & Craig H. Barratt	Prentice Hall International
Modern Control Systems – A manual of design methods	John A. Borrie	Prentice Hall International

Credits:4

(12 Hrs)

(12 Hrs)

IE-8205F NEURO FUZZY CONTROL

LTP 310

Unit I Introduction: Expert systems, fuzzy sets and control theory; representation, reasoning and acquisition; inference engines and functions approximator, model based and training based fuzzy control; neural networks and fuzzy systems; fuzzy-neural control: ideas & paradiagrams

Unit II Approximate Reasoning Approach: Introduction, Reasoning models, rule aggregation and operator selection, reasoning with uncertain data and rules, architecture of multivariable fuzzy control

Unit III Rule Base Construction By Self- Learning: Description of system structure, proposed learning algorithm, convergence analysis, error and derivative correction, fuzzy control algorithm, extracting rules from recorded data

Fuzzy Controller With Self Learning Teacher: Formulation of the problem, solution using neural networks (BNN network, isomorphic mapping of functionality), BNN based fuzzy controller, learning & rules extracting, hybrid neural network, system structure, dynamical self organizing, adaptive mechanisms, simplified fuzzy control algorithms, representation and reasoning by CPN, self construction of rule base, description of the CMAC and RBF. connecting the CMAC and RBF to the SFCA, self construction of the fuzzified network based controller

RECOMMENDED BOOKS Title Author Publisher Text Books Introduction to Neural Systems J.M.Zurada Jaico Publishers Dr. V.B.Rao and Sh. H.V. BPB Publications Neural Networks and Fuzzy Logic Rao **Reference Books** Fuzzy- Neural Control: Principles, Junhong Nie and Deret PHI algorithms and Applications Linkens M&T books C++ Neural Network and fuzzy logic Rao & Rao

Unit IV

(12 Hrs)

Credits:4

(12 Hrs)

(12 Hrs)

IE-8205G ADVANCED MICROPROCESSOR BASED SYSTEMS

LTP 310

Unit I Architecture of Microprocessor: Introduction to evolution of microprocessors, 8086 architecture; block diagram and pin configuration, comparison of 80186, 80286, 80386, 80486 and Pentium; architecture based

Unit II Programming of 8086 Microprocessor: Assembly language programming of 8086 microprocessor, addressing techniques, subroutines, macros, co-routines, functions

Unit III Interfacing of 8086 Microprocessor: Interfacing with general purpose peripheral devices; 8255, 8253, 8259, 8279 and memory Disk controller, CRT controller and printer controller (12 Hrs)

Unit IV Applications of 8086 Microprocessor: Applications: stepper motor control, traffic control, DAS

RECOMMENDED BOOKS Title Text Books	Author	Publisher
Microprocessors and Interfacing, Programming and Hardware	Douglas V Hall	McGraw Hill
Advanced microprocessor and peripherals, architecture, programming and interfacing	A K Ray & K M Bharchandi,	ТМН
Reference Books The Intel Microprocessor 8086, 80186, 80286, 80386, 80486, Pentium: architecture, programming & interfacing	Berry Brey	PHI
0	Barry Kauler	CMP Books

(12 Hrs)

Credits:4

(12 Hrs)

VIRTUAL INSTRUMENTATION AND DATA ACQUISITION IE-9101

LTP 310

<u>Un</u>it I

Introduction: Virtual Instrumentation — Definition, flexibility — Block diagram and Architecture of Virtual Instruments — Virtual Instruments versus Traditional Instruments — Review of LABVIEW software in virtual Instrumentation and programming techniques (12 Hrs)

Unit II Data Acquisition In Virtual Instrumentation: A/D, D/A converters, plug-in Analog

input/output cards - Digital Input/Output cards, Organization of the DAQ VI system - Opto isolation - Performing analog input and analog output - Scanning multiple analog channels -Issues involved in selection of data acquisition cards - Data acquisition modules with serial communication

Unit III Communication Networked Modules: Introduction to PC Busses — Local busses: ISA — PCI — RS232 — RS422 — RS485 — Interface Busses — USB, PCMCIA, VXI ,SCXI , PXI. - Instrumentation Busses : Modbus - GPIB - Networked busses - ISO/OSI Reference model, Ethernet — TCP/IP protocols (12 Hrs)

Real Time Control In Virtual Instrumentation and Applications: Design of ON/OFF controller. simulation of industrial instruments and systems, VI functions and objects including signal processing and analysis. Typical instruments and systems -digital storage oscilloscope, spectrum analyzer, waveform generator, Data visualization from multiple locations; Distributed monitoring and control devices

(12 Hrs)

(12 Hrs)

Credits:4

RECOMMENDED BOOKS Title Text Books	Author	Publisher
Labview for everyone PC interfacing for data acquisition and process control Reference Books	L K Wells & J Travis, S. Gupta and J.P. Gupta	Prentice Hall ISA
Labview — Applications and solutions Labview Graphical programming	Rahman Jamal and Herbert Picklik Gary Jhonson	National Instruments Release Mc Graw Hill

Unit IV

IE-9102A **BIO-INFORMATICS**

LTP 310

Unit I Bioinformatics: Data mining - similarity measures (Eudedean, Mahalonobis etc.), Dissimilarity index - hierarchical & non-hierarchical elements, cluster analysis (12 Hrs)

Unit II Classification of data bases: Bibliographic, numeric and structure 2D 3D), Biotechnology, Esbiobase, D-gene, SQL - Representation of a data record by relational, frame, hierarchical and object modes, Searching of database - Natural language query-keywords - search strategies - Boolean, Hands on experience on current content abstract database (12 Hrs)

Molecular modeling (Unit-I): 2D structure, entry to 2D to 3D conversion, methods Of Structure representation - Cartesian coordinates - internal coordinates, Z-matrix - Dummy atom - ignoring connection

Unit IV Molecular modeling (Unit-II): Z-matrix for H20, Glucine, methyal cyanide, ATP are to be practiced, Geometry optimization molecular mechanics. Genornics and proteomics

(12 Hrs)

RECOMMENDED BOOKS		
Title	Author	Publisher
Text Books		
Bioinformatics methods and protocols	Stephen Misener, S.A. Krawez	Humana Press
Molecular modeling basic principles and applications Reference Books	Hans-Dieter Holtfe and Gerd Folkers	Humana Press
Practical Biochemistry	Keith Willson & J. Walker	Cambridge University Press
Bioinformatics Technologies	Yi-Ping Phoebe Chen	Springer

Unit III

(12 Hrs)

DRIVES AND CONTROL

L T P 3 1 0

Credits:4

Unit I

Introduction to Motor Drives: Components of Power Electronic Drives - Criteria for selection of Drive components - Match between the motor and the load - Thermal consideration - Match between the motor and the Power Electronics converter - Characteristics of mechanical systems - stability criteria

(12 Hrs)

<u>Unit II</u>

D.C Motor Drives: System model motor rating - Motor-mechanism dynamics - Drive transfer function - Effect of armature current waveform - Torque pulsations - Adjustable speed dc drives - Chopper fed and 1-phase converter fed drives - Effect of field weakening

(12 Hrs)

<u>Unit III</u>

Induction Motor Drives: Basic Principle of operation of 3 phase motor, Equivalent circuit -MMF space harmonics due to fundamental current, Fundamental spatial MMF distributions due to time harmonics. Simultaneous effect of time and space harmonics - Speed control by varying stator frequency and voltage - Impact of non-sinusoidal excitation on induction motors - Variable frequency converter classifications - Variable frequency PWM-VSI drives, Variable frequency square wave VSI drives - Variable frequency CSI drives. Comparison of variable frequency drives - Line frequency variable voltage drives - Soft start of induction motors - Speed control by static slip power recovery. Vector control of 3 phase squirrel cage motors - Principle of operation of vector control

(12 Hrs)

Unit IV

Synchronous Motor Drives: Introduction - Basic principles of synchronous motor operation methods of control - operation with field weakening - load commutated inverter drives

RECOMMENDED BOOKS		
Title	Author	Publisher
Text Books		
Power Electronics	Ned Mohan	Wiley
Power Electronics Drives	Dubey	Wiley Eastern
Reference Books		
Power Electronics & Control of	W.Shephered, L N Hulley	Cambride
Motor		University Press
Power Electronics & Drives	G.K.Dubey & C.R.Kasaravada	ТМН

RANDOM SIGNALS AND STOCHASTIC **IE-9102C** PROCESSES

LTP 310

Unit I

Introduction: Probability and induction, causality vs. randomness, set theory, probability space, conditional probability, combined experiments, Bernoulli trials, Bernoulli's theorem (06 Hrs)

Random variables: Distribution and density functions, specific random variables, conditional distributions, function of random variable g(x), distribution of g(x), mean and variance, moments, characteristics functions

Unit II Two random variables: Bivariate distributions, one function of two random variables, two functions of two random variables, joint moments, joint characteristics functions, conditional distributions, conditional expected values

(06 Hrs) Sequences of random variables: Introduction, conditional densities, characteristics functions and normality, mean square estimation, stochastic convergence and limit theorems, random numbers (meaning and generation)

Unit III

Stochastic processes: Definitions, systems with stochastic inputs, power spectrum, discrete time processes, random walks, Poisson points and shot noise, modulation, cyclostationary processes, bandlimited processes and sampling theory, deterministic signals in noise, bispectra and system identification

Unit IV

Spectrum estimation: Factorizations and innovations, finite order systems and state variables, Fourier series and Karhunen-Loeve expansions, spectral representation of random processes, ergodicity, spectrum estimation, extrapolation and system identification, general class of extrapolation spectra and Youla's parameterization

(08 Hrs)

Mean square estimation: Introduction, prediction, filtering and prediction, Kalman filters (04 Hrs)

RECOMMENDED BOOKS				
Title	Author	Publisher		
Text Books				
Probability, random variables and	A. Papoulis, S. U. Pillai	ТМН		
stochastic processes				
Statistical digital Signal Processing	M.H.Hayes	John Wiley & Sons		
and modeling				
Reference Books				
Probability and Random Processes	H.Stark and John	Pearson Education		
with applications to signal processing	W.Woods			
Random Signal: Detection	K.Sam Shanmugan	John Wiley & Sons		
Estimation and Data Analysis				

(12 Hrs)

(06 Hrs)

(06 Hrs)

SYSTEM IDENTIFICATION AND PARAMETER IE-9102D **ESTIMATION**

LTP 310

Unit I

Principles of Modelling and Transfer function identification: System Identification and Stochastic Modeling- Structure and parameter estimation, Properties of estimates validation of models-impulse Response. Step Response. Frequency response- transfer function from these.- disturbances and transfer function, State Space Models- Distributed parameter models- model structures, Identifiably of model structures. Signal spectra, Signal realization and ergodicity. Multivariable systems, Transfer functions from frequency response, Fourier Analysis and Spectral analysis- Estimating Disturbance Spectrum, Correlation Identification, Practical Implementation, Pseudo random binary signals, Maximum length sequences, Generation using hardware, random number generation on digital computer

Parameter Estimation Methods: Guiding principles behind parameter estimation methods, Minimizing prediction errors, Linear regression and least squares methods, Statistical framework for parameter estimation, Maximum likelihood estimation, Correlating prediction errors with past data, Instrumental variable method, Consistency and identifiably- Recursive methods, RLS Algorithm, Recursive IV Method- Recursive Prediction Error Method, Recursive pseudo-linear regressions, choice of updating step

Unit II

Unit III Identification of Multivariable Systems and Closed Loop Systems: Transfer function matrix representation of MVS- state space method input output difference equation method canonical models for MVS, Comparison of different models, Identification of continuous MV systems from input output data, Identification of closed loop systems, Reduction of higher order systems, Aggregation method, Aggregation with partial realization, Singular perturbation method, Optimum approximation, comparison of different methods of model reduction

Unit IV Experiment Design and Choice of Identification Criterion: Optimal Input design, Persistently exciting condition. Optimal input design for higher order black box models, Choice of sampling interval and pre-sampling filters, Choices of Identification criterion, Choice of norm, variance: optimal instruments

(12 Hrs)

RECOMMENDED BOOKS		
Title	Author	Publisher
Text Books		
Linear Estimation	Thomas Kailath	PH
Parameter Estimation	Harold W Sorensen	Marcel Dekker Inc
Reference Books		
Identification of Systems	Daniel Graupe	Van Nostrand
System Identification Theory for the User	Lennart Ljung	Prentice Hall Information Systems Science Series

(12 Hrs)

(12 Hrs)

(12 Hrs)

LTP 310

Unit I

Reliability Fundamentals: Introduction, Importance of reliability, Reliability functions, Failure and Failure Modes, causes of failure, Instantaneous failure rate, General reliability Function

(06 Hrs) Component Reliability and Hazard Model: Component reliability from Test data, failure data (Failure density, failure rate, reliability, probability of failure) mean failure rate MTTF, MTBF. Hazard Models (Time dependent Hazard models, Constant Hazard model, Linear Hazard model, on-linear hazard model

Unit II System Reliability: Reliability evaluation of non-maintained systems, series, parallel, series- parallel, non-series, standby configuration, k out of n configuration, complex system, Markov's Method, Fault tree technique, Event space, path Tracing methods, cut-set and tie set method

Unit III **Reliability Improvement:** Introduction, Improvement of components, redundancy: standby with perfect and imperfect switching .Comparison of component redundancy to system/unit redundancy, mixed redundancy, stand by redundancy

Reliability Allocation: Introduction, Redundancy allocation and techniques for reliability allocation

Unit IV Availability and Maintainability: Concepts of reliability ,availability and maintainability, types of availability, objectives of maintenance, classification and factor effecting maintenance, maintenance levels, Inventory control of spare parts, Preventive maintenance of some electrical appliances

(12 Hrs)

RECOMMENDED BOOKS Title Text Books	Author	Publisher
Reliability Engineering	L.S. Srinath	Affiliated East –West Press
Reliability Engineering	E. Balagurusamy	Tata McGraw Hill
Reference Books Reliability Evaluation of Engg. Systems:	R. Billinton & Ronald N.	
Concepts & Techniques	Allan	FIEITUIII FIESS
Reliability Engineering	K K Aggarwal	Academic Press

(06 Hrs)

Credits:4

(12 Hrs)

(06 Hrs)

ARTIFICIAL INTELLIGENCE

LTP 310

Unit I

Artificial Intelligence: History and Applications, Production Systems, Structures and Strategies for state space search- Data driven and goal driven search. Depth First and Breadth First Search, DFS with Iterative Deepening, Heuristic Search- Best First Search, A* Algorithm, AO* Algorithm, Constraint Satisfaction, Using heuristics in games- Minmax Search, Alpha Beta Procedure

Unit II Knowledge representation: Propositional calculus, Predicate Calculus, Theorem proving by Resolution, Answer Extraction, AI Representational Schemes- Semantic Nets, Conceptual Dependency, Scripts, Frames, Introduction to agent based problem solving

Unit III Machine Learning: Symbol based and Connectionist, Social and Emergent models of learning, The Genetic Algorithm- Genetic Programming, Languages and Programming Techniques for AI- Introduction to PROLOG and LISP-features. Basics of search strategies and Logic Programming in LISP

Overview of Expert System Technology: Rule based Expert Systems, Expert systems Inference: Forward chaining and backward chaining, Deduction process, Languages and tools, Knowledge acquisition and uncertainty: Explanation facilities, knowledge acquisition, dealing with uncertainty, fuzzy reasoning, Introduction to natural language processing, Understanding, perception, learning; explanation facilities and knowledge acquisition

(12 Hrs)

Author	Publisher
D. W. Patterson	PHI
Rich and K. Knight	TMH
-	
D. W. Rolston	TMH
G. F. Luger	Pearson
-	
	D. W. Patterson Rich and K. Knight

Unit IV

Credits:4

(12 Hrs)

(12 Hrs)

IE-9102G CRYPTOGRAPHY

L T P 3 1 0

<u>Unit I</u>

Introduction: Confidentiality, Data Integrity, Authentication, Non-Repudiation, and Overview of Issues involved (06 Hrs) Classical Encryption Techniques: Mono-alphabetic, Substitution Methods, Poly-

alphabetic Substation Methods, Permutation Methods, Cryptanalysis of these Methods (06 Hrs)

<u>Unit II</u>

Modern Encryption Techniques: Simplified DES, DES, Triple DES, Block Cipher, Design Principles, Block Cipher Modes of Operation. IDEA, Security Issues Involved with these methods (06 Hrs)

Confidentiality Using Conventional Encryption: Placement of Encryption, Traffic Confidentiality, Key Distribution, Random Number, Generation

(06 Hrs)

<u>Unit III</u>

Introduction to Number Theory: (Basics Pertaining to Security Related Algorithms). Public Key Cryptography : Principles -- RSA Algorithm, Message Authentication and Hash Functions -- Hash an MAC Algorithms, Digital Signatures and Authentication Protocols -- Authentication Applications

(12 Hrs)

Unit IV Basic Overview of: Electronic Mail Security, IP Security, WEB Security

System Security: Intruders, Viruses and Worms, Firewalls

(06 Hrs)

(06 Hrs)

RECOMMENDED BOOKS			
Title	Author	Publisher	
Text Books			
Network Security: The	Roberta Bragg, Mark Phodes-	Tata Mcgraw-Hill	
Complete Reference	Ousley, Keith Strassberg		
Handbook of Applied	Alfred J. Menezes	CRC Press	
Cryptography			
Reference Books			
Cryptography : A very	Fred Piper	Oxford University Press	
short Introduction			
Cryptography and	William Stallings	PHI	
Network Security			